Interworking 1998

Interoperability in heterogeneous environment:

MULTIPTROTOCOL OVER ATM (MPOA)

Dipl.-Ing. Kai-Oliver Detken System Management ATM/Internet OptiNet GmbH, Ottawa, 7th July 1998

OptiNet 07-98

Letter of Contents

- Network requirements
- IP- and ATM features in comparison
 - Adaptation possibilities: CLIP and LANE
 - Integration of IP and ATM: MPOA and MPLS
- View in the near future

Network Requirements

- Quality-of-Service (QoS): End-to-end connections
 - High Bandwidth in the Backbone and to the Clients
 - Address Flexibility
 - Security and Billing mechanisms
 - **Sca**lability
 - Universal Connectivity
- Further use of Legacy LANs
- Different support of Services and Networks
- Availability of Applications
- Integration of new Services
- Simple, flexible Management and Configuration

IPv4 Features

- Internet Protocol works connectionless (hopby-hop-transmission)
 - No acknowledgements, error- and duplicate detection with IP
- Data packets are variable: 20 byte 65 kbyte; destination address identified the other client
- Lost data packets have to repeat requested by higher layer protocols (TCP)
- Multicast/Broadcast functions
- Best-Effort: Type-of-Service (TOS)

ATM Features

Connection-oriented technology: virtual connections will establish for the cell transport (PVC/SVC) ATM has its own address structure, signaling, and routing funktions 53 byte cells with fixed size contain payload and control data Point-to-point connections

Quality-of-Service (QoS)

Classical-IP (CLIP)

- RFC-1577: Classical-IP and ARP over ATM
- RFC-1483: Logical Link Control Encapsulation and VC-Based Multiplexing
- D-MTU 9180 Byte higher efficient as smaller MTU sizes
- PVC/SVC connections are supported
 - Adaptation layer AAL-5
 - Point-to-point connections
- Address resolution by central ATMARP server

LAN Emulation (LANE)

- Migration of legacy LANs to ATM: Ethernet switch (layer 2) and router (layer 3) coupling
- Universal implementation (MAC layer is emulated): arbitrary LAN protocols
- Using of the application layer without ATM configuration
- Support of PVC/SVC connections
- AAL-5 packet encapsulation
- IP multicasting
- D-MTU: 1500 byte

Multiprotocol-over-ATM (MPOA)

- Emulates a fully routed layer 3 protocol over ATM
- General approach for any layer 3 protocol (IP, IPX, ..) Distribute the routing functions between route servers
- Separate routing from switching functions
- Leverage performance and QoS capabilities of ATM network
 Direct connections between ELANs rather than passing through traditional routers
- Direct Virtual Channel Connections (VCC) between data forwarding devices
- Interworking with unified routers
- Enables subnet members to be distributed across the network
- Efficient scalability of the ATM network

Original MPOA Architecture

Basics of MPOA

- LANE 2.0 is integrated for the Intra-Subnet communication
 - Next-Hop-Resolution-Protocol (NHRP) is basic for the extended Address Resolution Protocol, which is used for the establishment of ATM-SVCs over Subnet Limitations
- MPOA Client (MPC): Functionality on Edge Device or ATM Host, is starting and ending point of one shortcut connection, determine of Traffic Flows, storage of shortcut information
- MPOA Router (MPR): Mapping of subnets on layer 3 from ATM networks, NHRP for address resolution, managing of address information (MAC, ATM, IP), OSPF + RIP for the communication with legacy Routers
- MPOA Server (MPS): Logical component of a MPOA router, includes NHS, MPC Layer 3 Forwarding Information

Multiprotocol-Label-Switching (MPLS)

- Integrates the label swapping forwarding paradigm with network layer routing
- Label Swapping improves the scalability of the network layer and layer routing service
- Allowing new routing services to be added without a change to the forwarding paradigm
- MPLS is not confined to any specific link layer technology
- Use of a routing approach whereby the normal mode of operation is that layer 3 routing

MPLS Core Mechanisms

- Semantics assigned to a stream label: Labels are associated with specific streams of data.
- Forwarding Methods: Forwarding is simplified by the use of short fixed length labels to identify streams; Forwarding may require simple functions such as looking up a label in a table, swapping labels, and possibly decrementing and checking a TTL; direct use of underlying layer 2 forwarding, such as is provided by ATM or Frame Relay equipment.
- Label Distribution Methods: Allow nodes to determine which labels to use for specific streams; use some sort of control exchange, and/or be piggybacked on a routing protocol

Comparison of the technologies

		CLIP	MPOA	MPLS
Standardized by	ATM-Forum	IETF	ATM-Forum, IETF	IETF
Logical Unit	Emulated LAN (ELAN)	Logical IP Subnet (LIS)	Emulated LAN (ELAN)	Logical IP Subnet (LIS)
Connection of logical units	Layer 2 (bridging)	Layer 3 (routing)	Layer 2 or Layer 3	Layer 3
Network Protocols	Any layer 3 protocol	Only IP	Any layer 3 protocol	Mainly IP
MTU Size	1 500 byte, restricted by legacy LANs	9 180 byte, restricted by IP and AAL-5	1 500 byte, restricted by network protocol and AAL-5	Restricted by network protoco
Broadcast/Multic ast	BUS	MARS	BUS (MARS)	MARS
Address Resolution	IP→MAC, MAC→ATM	ARP server	NHRP	NHRP
QoS	Not supported	Not support	Will be supported	Will be supported, restricted by the network protocol

View in the near future

- CLIP, Version 2
 - distributed ATMARP server
- LANE, Version 2
 - L-UNI: QoS, Multicast, ELAN Multiplexing
 - L-NNI: distributed LES/BUS
- MPOA, Version 1
 - Further work on integration new protocols like RSVP and P-NNI
 - Further integration of LANE 2.0
- MPLS, Version 1
 - The standard will come this year (1998)
 - Depends on Tag Switching development of CISCO OptiNet 07-98

Book Tip

ATM in TCP/IP-Networks Basics and Migrations to High Speed Networks

```
Author: Kai-Oliver Detken
ISBN-Nr.: 3-7785-2611-1
Price: 88 DM
Publishing Data: February 1998
Publishing House: Hüthig, Heidelberg (Germany)
URL: http://www.dpunkt.de/huethig/ATM-IP/
```

Thank you for your attention

detken@optinet.de http://www.optinet.de

OptiNet GmbH Goebelstraße 50 D-28865 Lilienthal Tel.: 04298/9365-0 Fax: 04298/9365-22

OptiNet 02-98 -

ONLINE'98